skip to main content


Search for: All records

Creators/Authors contains: "Dong, Lin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Constructing single atom catalysts with fine-tuned coordination environments can be a promising strategy to achieve satisfactory catalytic performance. Herein, via a simple calcination temperature-control strategy, CeO2supported Pt single atom catalysts with precisely controlled coordination environments are successfully fabricated. The joint experimental and theoretical analysis reveals that the Pt single atoms on Pt1/CeO2prepared at 550 °C (Pt/CeO2-550) are mainly located at the edge sites of CeO2with a Pt–O coordination number ofca. 5, while those prepared at 800 °C (Pt/CeO2-800) are predominantly located at distorted Ce substitution sites on CeO2terrace with a Pt–O coordination number ofca. 4. Pt/CeO2-550 and Pt/CeO2-800 with different Pt1-CeO2coordination environments exhibit a reversal of activity trend in CO oxidation and NH3oxidation due to their different privileges in reactants activation and H2O desorption, suggesting that the catalytic performance of Pt single atom catalysts in different target reactions can be maximized by optimizing their local coordination structures.

     
    more » « less
  2. Abstract

    Complementary features of randomized controlled trials (RCTs) and observational studies (OSs) can be used jointly to estimate the average treatment effect of a target population. We propose a calibration weighting estimator that enforces the covariate balance between the RCT and OS, therefore improving the trial-based estimator's generalizability. Exploiting semiparametric efficiency theory, we propose a doubly robust augmented calibration weighting estimator that achieves the efficiency bound derived under the identification assumptions. A nonparametric sieve method is provided as an alternative to the parametric approach, which enables the robust approximation of the nuisance functions and data-adaptive selection of outcome predictors for calibration. We establish asymptotic results and confirm the finite sample performances of the proposed estimators by simulation experiments and an application on the estimation of the treatment effect of adjuvant chemotherapy for early-stage non-small-cell lung patients after surgery.

     
    more » « less
  3. Abstract

    Converting mechanical energy from either the ambient environment or the human body motions to the useful electrical energy will revolutionize power solutions for flexible electronics. Here, a hybrid energy harvesting strategy is reported, which combines porous polymeric piezoelectric film with an electrostatic layer as an integration for converting the mechanical energy into electrical energy. The piezoelectric materials through engineered microstructures are developed to enhance energy generation due to the higher compressibility and larger surface contact area. The electrostatic effect from the charged layer further contributes to the generation of electrical charges. By directly coating the stretchable carbon nanotubes onto the elastomers, more intimate integration of the hybrid energy harvesters enables the designs for complex electronics. Such flexible hybrid piezoelectric‐electrostatic device exhibits superior energy harvesting performance with a voltage output of 1.95 V, which improves 30% and 100% compared to the electrostatic and piezoelectric alone device, respectively. Experiments are also performed to demonstrate the implementation of the hybrid device's energy conversion to power small electronics and recognition of different body motions. Such hybrid strategy provides a new solution toward future energy revolution for flexible electronics.

     
    more » « less
  4. Dynamic treatment regimes operationalize precision medicine as a sequence of decision rules, one per stage of clinical intervention, that map up‐to‐date patient information to a recommended intervention. An optimal treatment regime maximizes the mean utility when applied to the population of interest. Methods for estimating an optimal treatment regime assume the data to be fully observed, which rarely occurs in practice. A common approach is to first use multiple imputation and then pool the estimators across imputed datasets. However, this approach requires estimating the joint distribution of patient trajectories, which can be high‐dimensional, especially when there are multiple stages of intervention. We examine the application of inverse probability weighted estimating equations as an alternative to multiple imputation in the context of monotonic missingness. This approach applies to a broad class of estimators of an optimal treatment regime including both Q‐learning and a generalization of outcome weighted learning. We establish consistency under mild regularity conditions and demonstrate its advantages in finite samples using a series of simulation experiments and an application to a schizophrenia study.

     
    more » « less
  5. Abstract

    Vibration‐based energy‐harvesting technology, as an alternative power source, represents one of the most promising solutions to the problem of battery capacity limitations in wearable and implantable electronics, in particular implantable biomedical devices. Four primary energy transduction mechanisms are reviewed, namely piezoelectric, electromagnetic, electrostatic, and triboelectric mechanisms for vibration‐based energy harvesters. Through generic modeling and analyses, it is shown that various approaches can be used to tune the operation bandwidth to collect appreciable power. Recent progress in biomechanical energy harvesters is also shown by utilizing various types of motion from bodies and organs of humans and animals. To conclude, perspectives on next‐generation energy‐harvesting systems are given, whereby the ultimate intelligent, autonomous, and tunable energy harvesters will provide a new energy platform for electronics and wearable and implantable medical devices.

     
    more » « less
  6. Abstract

    Harvesting biomechanical energy to power implantable electronics such as pacemakers has been attracting great attention in recent years because it replaces conventional batteries and provides a sustainable energy solution. However, current energy harvesting technologies that directly interact with internal organs often lack flexibility and conformability, and they usually require additional implantation surgeries that impose extra burden to patients. To address this issue, here a Kirigami inspired energy harvester, seamlessly incorporated into the pacemaker lead using piezoelectric composite films is reported, which not only possesses great flexibility but also requires no additional implantation surgeries. This lead‐based device allows for harvesting energy from the complex motion of the lead caused by the expansion‐contraction of the heart. The device's Kirigami pattern has been designed and optimized to attain greatly improved flexibility which is validated via finite element method (FEM) simulations, mechanical tensile tests, and energy output tests where the device shows a power output of 2.4 µW. Finally, an in vivo test using a porcine model reveals that the device can be implanted into the heart straightforwardly and generates voltages up to ≈0.7 V. This work offers a new strategy for designing flexible energy harvesters that power implantable electronics.

     
    more » « less